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Abstract

This paper extends a class of approximate Riemann solvers devised by Harten, Lax and van Leer (HLL) for Euler

equations of hydrodynamics to magneto-hydrodynamics (MHD) equations. In particular, we extend the two-state

HLLC (HLL for contact wave) construction of Toro, Spruce and Speares to MHD equations. We derive a set of HLLC

middle states that satisfies the conservation laws. Numerical examples are given to demonstrate that the new MHD-

HLLC solver can achieve high numerical resolution, especially for resolving contact discontinuity. In addition, this

new solver maintains a high computational efficiency when compared to Roe�s approximate Riemann solver.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Many astrophysics problems demand solutions of magneto-hydrodynamics (MHD) equations. There

are many numerical techniques to solve MHD equations. In this paper, we consider a Godunov type of

method. Godunov�s method and its various derivatives have gained increasing popularity in solving the Eu-

ler equations of hydrodynamics (HD) due to their robustness and ability to achieve high resolution near

discontinuities. Central to these methods is the exact or approximate solutions of the Riemann problem.
In the last decade, several Godunov methods for HD have been extended to MHD systems. These methods

conservatively update the zone-averaged or grid-centered fluid and magnetic field quantities based on esti-

mated advective fluxes of mass, momentum, energy and magnetic field at grid interfaces using solutions to

the Riemann problem at interfaces. Some of the MHD examples have been given by Brio and Wu [4], Zach-
0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
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ary et al. [24]. Dai and Woodward [6,7], Powell [15], Ryu and Jones [19], Roe and Balsara [18], and Balsara

[2], among others.

The exact Riemann solver is generally considered too expensive for most Godunov type methods. As a re-

sult, several approximate Riemann solvers have been developed. One of the most widely used solvers is the

Roe�s approximate Riemann solver [17], which has been applied to MHD by many authors [4,15,19,
18,2,16]. Roe�s solver requires eigen-decomposition, which becomes more complicated and time-consuming

in MHD than in HD [18]. Moreover, Roe�s approximate Riemann solver does not preserve the positivity

[8]. This problem becomes worse in MHD when gas pressure is much less than magnetic pressure.

The approximate Riemann solver devised by Harten, Lax, and van Leer [10] (HLL) has a nice property

that it is a positive scheme if used with an appropriate choice of wavespeed bounds for any conservative

hyperbolic system. The HLL Riemann solver does not require field-decomposition. The simple single state

HLL solver assumes only one intermediate wave state between the two acoustic waves and has been shown

to be reliable and robust in most applications. A typical example of the single state HLL solver is HLLE
scheme by Einfeldt et al. [8], who proposed a particular wavespeed bound which enables the intermediate

state to satisfy the so-called entropy and positivity conditions.

The single-state HLL and HLLE solvers, however, are too diffusive and cannot resolve isolated contact

discontinuities very well. In the original work by Harten et al. [10], they have already realized this problem

and suggested that a two-state approximation could yield an exact resolution of an isolated intermediate

wave (e.g., a shock, contact, or Alfvén wave, etc.). They further proposed a general framework to construct

such types of solvers. The full implementation of this approach, however, was never given, perhaps partly

owing to the fact that the two-state HLL algorithm described in [10] is non-intuitive, cumbersome and
somewhat ambiguous because it contains arbitrary constants [13]. Another approach to improve the sin-

gle-state HLL scheme was introduced in [8], called HLLEM. This approach used a partial eigen-decompo-

sition and added anti-diffusion terms only to the linearly degenerated fields.

A different but much simpler approach in constructing the two-state HLL-type solvers came from Toro

et al. [22], who assumed that the intermediate left and right states have the same velocity and pressure.

These assumptions are physically valid for the contact wave, which is why this solver is called HLLC

(‘‘C’’ stands for Contact). Batten et al. [3] retained the basic assumptions of Toro et al. but suggested a dif-

ferent way for computing the wavespeed of the intermediate states. They showed that their HLLC solver
can resolve isolated shock and contact waves exactly and remain positively conservative for HD equations

with a proper choice of the wavespeed bounds.

Recently, Linde [13] proposed a new, general purpose, two-state HLL solver by following the original

two-state framework by Harten et al. [10], though his method is substantially simpler. The two-state

HLL solver is based on a convex entropy function, its gradients and Hessian matrix to identify the velocity

and strength of the middle wave. Linde used a geometric interpretation of the Rankine–Hugoniot condi-

tions to estimate the speed and strength of the middle wave, therefore eliminating the arbitrary constants

of the original HLL framework.
Many of the HLL-type solvers discussed above have been applied to MHD problems with varying de-

gree of success. Examples include Janhunen [11], Wesenberg [23], Linde [13], Gurski [9], and others. Moti-

vated by the work of Powell [15], Janhunen [11] developed a new MHD-HLL scheme while adding a source

term proportional to $ Æ B in the induction equation. He then showed by extensive tests that no counter-

examples have been found to the positivity of this MHD-HLL method. Wesenberg [23] extended HLLEM

to MHD by adding anti-diffusion terms to all the waves except the two fast magneto-sonic waves. He then

demonstrated numerically that for both smooth and non-smooth problems in 1D and 2D, MHD-HLLEM

was the most efficient solver in terms of computational time versus error. Since MHD flows contain as
many as seven (or eight) eigen-waves, however, the computational saving by HLLEM over the Roe�s solver
may not be as great as that in the pure HD flows. The solver developed by Linde [13] is directly applicable

to MHD problems and has been shown to be better than the HLLE solver. Some recent studies aimed at
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applying HLLC to MHD problems (e.g., Gurski [9]). However, we found that a straightforward implemen-

tation of Toro and Batten�s HLLC solver for MHD equations failed and/or yielded unphysical solutions

which violate conservation laws.

In this paper, we propose a new MHD-HLLC solver which is the same as Toro and Batten�s HLLC sol-

ver in the pure HD limit but satisfies the conservation laws in MHD. The outline of the paper is as follows.
In Section 2, we review the HLL and HLLC solvers for HD equations. In Section 3, we derive the new

MHD-HLLC solver for MHD, first for 1D and then for multi-dimensional problems. Several examples

are given in Section 4, demonstrating the effectiveness of our scheme.
2. HLL and HLLC Riemann solver for HD

For the sake of completeness and ease of subsequent discussion on how to build a new MHD-HLLC
solver, we will first give a brief overview on the construction of HLL and HLLC solvers for pure HD.

2.1. The HLL flux

The Euler equations may be written as
@U

@t
þr � F ðUÞ ¼ 0; ð1Þ
where U and F(U) represent the conservative variables and their fluxes,
U ¼
q

qu

E

2
64

3
75; F ðUÞ ¼

qu

quuT þ pI

ðE þ pÞu

2
64

3
75;
where q, u = (u, v, w), E and p represent density, Cartesian velocity components, total energy per unit vol-

ume, and pressure, respectively.

Consider the Riemann problem along the x-direction, it has the following piece-wise constant initial data
for the left and right states
Uðx; 0Þ ¼
Ul; if x < 0;

Ur; if x > 0:

�

A simple conservative discretization for Eq. (1) gives
Unþ1
i ¼ Un

i �
Dt
Dx

ðF iþ1
2
� F i�1

2
Þ:
In the HLL approach, to calculate the fluxes F iþ1
2
, Harten et al. [10] proposed a single state approximate

Riemann solution as
UHLL ¼
Ul; if SL > 0;

U�; if SL 6 0 6 SR;

Ur; if SR < 0;

8><
>:
where SL and SR represent the fastest wave speed for the left and right states, respectively. The variable U*

denotes the intermediate subsonic state and is defined as
U� ¼ SRUr � SLUl � ðF r � F lÞ
SR � SL

; ð2Þ
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where Fl = F(Ul) and Fr = F(Ur). The corresponding interface flux is defined as
F HLL ¼
F l; if SL > 0;

F lr; if SL 6 0 6 SR;

F r; if SR < 0;

8><
>:
where Flr is given as
F lr ¼
SRF l � SLF r þ SLSRðUr �UlÞ

SR � SL

:

Note that FHLL 6¼ F(UHLL) for the subsonic case SL 6 0 6 SR.

There are several methods to evaluate the wavespeed bounds SL and SR [21] and in this paper, we adopt

the one proposed in [8] because they have shown, with their choices of SL and SR, the HLL Riemann solver
satisfies an entropy inequality, resolves isolated shocks exactly and preserves positivity [8].
2.2. HLLC flux

The HLLC flux is a modification of FHLL. Instead of a single intermediate state U*, two intermediate

states, U�
l and U�

r , are assumed, separated by an interface moving with speed SM. To calculate U�
l and

U�
r , we recap the approach taken by Batten et al. [3] by applying the Rankine–Hugoniot conditions across

the SL wave
F �
l ¼ F l þ SLðU�

l �UlÞ: ð3Þ
Similarly, the jump relation across the SR wave gives,
F �
r ¼ F r þ SRðU�

r �UrÞ: ð4Þ
Eq. (3) may be rewritten as
SLU
�
l � F �

l ¼ SLUl � F l: ð5Þ

Following Batten et al. and assuming F �

l ¼ F ðU�
l Þ, we can write out Eq. (5) along the direction

~n ¼ ðnx; ny ; nzÞ which is normal to the interface separating states Ul and U�
l ,
SL

q�
l

q�
l u

�
l

q�
l v

�
l

q�
l w

�
l

E�
l

2
6666664

3
7777775
�

q�
l q

�
l

q�
l u

�
l q

�
l þ p�nx

q�
l v

�
l q

�
l þ p�ny

q�
l w

�
l q

�
l þ p�nz

ðE�
l þ p�Þq�l

2
6666664

3
7777775
¼ SL

ql

qlul
qlvl
qlwl

El

2
6666664

3
7777775
�

qlql
qlulql þ pnx
qlvlql þ pny
qlwlql þ pnz
ðEl þ pÞql

2
6666664

3
7777775
; ð6Þ
where ql = ulnx + vlny + wlnz is the velocity component of the state Ul along ~n. q�l is defined similarly.

Toro et al. [22] made the further assumption that the wavespeed is constant between the two acoustic

waves,
SM ¼ q�l ¼ q�r ¼ q�:
Eq. (6) shows that the U�
l;r can be solved uniquely if q* and Ul,r are known.

There are several approaches to estimate the middle wave speed q* [22]. We used an approach proposed
by Batten et al. [3]. This approach is to extract the average velocity q* from the HLL approximation of U*.

Taking the Riemann problem in x-direction as an example, ~n ¼ ð1; 0; 0Þ; q ¼ u, we have
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q� ¼ qrqrðSR � qrÞ � qlqlðSL � qlÞ þ pl � pr
qrðSR � qrÞ � qrðSL � qlÞ

: ð7Þ
3. HLLC for MHD

3.1. Eigen-structure for MHD

The ideal MHD equations can be formulated as
qt þr � ðquÞ ¼ 0; ð8Þ

ðquÞt þr � quuT þ ðpÞI� BBT
� �

¼ 0; ð9Þ

Et þr � ðE þ pÞu� Bðu � BÞ½ � ¼ 0; ð10Þ

Bt �r � ðuBT � BuTÞ ¼ 0; ð11Þ

where q is density, u is the velocity, B is the magnetic field, E is the total energy per unit volume, and p is the

total pressure, defined as
p ¼ pgas þ
1

2
B � B; ð12Þ
where pgas is the gas pressure that satisfies the equation of state,
pgas ¼ ðc� 1Þ E � 1

2
qu � u� 1

2
B � B

� �
:

One external constraint for magnetic field is the divergence-free condition $ Æ B = 0, which becomes

Bx = constant in one dimension.

Fig. 1 shows the {x � t} diagram of all the waves at a cell interface for MHD. They are: one entropy

waves with speed u, two Alfvén waves with speed u ± ca, where ca ¼ Bx=
ffiffiffi
q

p
, and four magneto-acoustic

waves (two fast and two slow) with speed, u ± cf and u ± cs, where
x

t

u + c

u + c

u+c

u
uc

uc

uc

f

a

s

s

a

f

U
U

L

R

Fig. 1. Waves in 1D MHD Riemann problem.
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c2f;s ¼
1

2

cp þ B � B
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp þ B � B

q

� �2

� 4
cpB2

x

q2

s0
@

1
A;
and ‘‘+’’ for fast and ‘‘�’’ for slow waves.

3.2. HLLC for 1D MHD

For simplicity, we consider the ideal MHD equations in Cartesian grids only. It can be readily applied to

other orthogonal curvilinear grids. We first show that a straightforward extension of HLLC scheme of [22]
to the MHD equations does not work. Then we propose our modified MHD-HLLC scheme.

Consider the 1D MHD equations, where Bx is constant. Re-write Eq. (6) for MHD, we get (subscript �l�
is dropped for simplicity)
SL

q�

q�u�

q�v�

q�w�

B�
x

B�
y

B�
z

E�

2
66666666666664

3
77777777777775
�

q�q�

q�u�q� þ p� � ðB�
xÞ

2

q�v�q� � B�
xB

�
y

q�w�q� � B�
xB

�
z

0

u�B�
y � v�B�

x

u�B�
z � w�B�

x

ðE� þ p�Þq� � B�
xðB � uÞ�

2
66666666666664

3
77777777777775
¼ SL

q

qu

qv

qw

Bx

By

Bz

E

2
66666666666664

3
77777777777775
�

qq

quqþ p � ðBxÞ2

qvq� BxBy

qwq� BxBz

0

uBy � vBx

uBz � wBx

ðE þ pÞq� BxðB � uÞ

2
66666666666664

3
77777777777775
; ð13Þ
where p (or p*) represents the total pressure, defined by (12), and u* = q*, u = q.

Similar to Eq. (7), the speed q* for MHD can be written as
q� ¼
qrqrðSR � qrÞ � qlqlðSL � qlÞ þ pl � pr � B2

xl
þ B2

xr

qrðSR � qrÞ � qrðSL � qlÞ
: ð14Þ
Other components of U* can now be derived from Eq. (13). After some manipulation, we obtain
B�
y ¼

SL � u� B�
xBx

qðSL�uÞ

� �
By � ðB�

x � BxÞv

SL � q� � ðB�
x Þ

2

qðSL�uÞ

; ð15Þ

B�
z ¼

SL � u� B�
xBx

qðSL�uÞ

� �
Bz � ðB�

x � BxÞw

SL � q� � ðB�
x Þ

2

qðSL�uÞ

; ð16Þ
and
p� ¼ qðSL � uÞðq� � uÞ þ p � B2
x þ ðB�

xÞ
2
: ð17Þ
To satisfy the assumption p�l ¼ p�r with the definition of q*, we obtain
B�
xl
¼ B�

xr
; ð18Þ
which is obviously true in 1D. We will re-visit this relation for multi-dimensional problems in Section 3.3.

With the known values of B�
x ; B�

y ; B�
z ; q� and p�, the rest of the components can be derived easily:
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q�
l ¼ q

SL � u
SL � q�

; ð19Þ

ðquÞ�l ¼ q�q�; ð20Þ

ðqvÞ�l ¼ ðqvÞ SL � u
SL � q�

�
ðB�

xB
�
y � BxByÞ

SL � q�
; ð21Þ

ðqwÞ� ¼ ðqwÞ SL � u
SL � q�

� ðB�
xB

�
z � BxBzÞ

SL � q�
; ð22Þ

E�
l ¼ E

SL � u
SL � q�

þ ðp�q� � puÞ � ðB�
xðB � uÞ� � BxðB � uÞÞ

SL � q�
: ð23Þ
The right middle state U�
r can be derived similarly. The two-state HLLC fluxes can be calculated via Eqs.

(3) and (4).
Unfortunately, the HLLC middle state U* derived above is not consistent with the integral form of the

conservation laws, which is described as a Consistency Condition by Toro [21]:
q� � SL

SR � SL

U�
l þ

SR � q�

SR � SL

U�
r ¼

SRUr � SLUl � ðF r � F lÞ
SR � SL

; ð24Þ
even though the pure HD HLLC intermediate states do satisfy this condition. Indeed, when we tested the

solution from Eqs. (15)–(23), we found that they either failed quickly or gave completely unphysical results.

However, we were able to find a set of solutions which complies with the conservation law Eq. (24) by

the following procedure. We choose to keep Eqs. (14) and (17) unchanged. The idea is to see whether we

can derive new expressions for B�
y and B�

z that satisfy Eq. (24). Substituting Eqs. (21) and (22) into Eq. (24),

we obtain the following conditions for the magnetic components
B�
xl
B�
yl
¼ B�

xr
B�
yr
; ð25Þ

B�
xl
B�
zl
¼ B�

xr
B�
zr
: ð26Þ
Since B�
xl
¼ B�

xr
from condition (18), Eqs. (25) and (26) give
B�
yl
¼ B�

yr
; B�

zl
¼ B�

zr
: ð27Þ
Furthermore, we assign the single HLL average state values to them using Eq. (2),
B�
yl
¼ B�

yr
¼ BHLL

y ; B�
zl
¼ B�

zr
¼ BHLL

z : ð28Þ
Note that other choices for B�
y and B�

z should also work as long as they satisfy Eq. (27).

Having derived the new B�
y and B�

z , along with q* and p*, we now proceed to find a new E�
l;r, defined in

(23), which satisfies Eq. (24). Substituting Eq. (23) into Eq. (24), we get
B�
xl
ðB � uÞ�l ¼ B�

xr
ðB � uÞ�r ; or ðB � uÞ�l ¼ ðB � uÞ�r : ð29Þ
As in Eq. (27), we can assign the HLL average values to them,
ðB � uÞ�l ¼ ðB � uÞ�r :¼ BHLL � uHLL; ð30Þ

and the middle state equation (23) becomes
E�
l ¼ E

SL � u
SL � q�

þ ðp�q� � puÞ � ðB�
xðB

HLL � uHLLÞ � BxðB � uÞÞ
SL � q�

: ð31Þ
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The quantity uHLL can be calculated from the conservative variables UHLL. We remark that if we had

chosen ðB � uÞ�k ¼ B�
k � u�k , Eq. (29) would not be satisfied by the given expressions of B* and u*.

With the newly derived U�
l;r that satisfy Eq. (24), we can now write the MHD-HLLC flux as, keeping the

original format,
F

F HLLC ¼

F l; if 0 6 SL;

F �
l ¼ F l þ SLðU�

l �UlÞ; if SL 6 q�;

F �
r ¼ F r þ SRðU�

r �UrÞ; if q� 6 SR;

F r; if 0 P SR:

8>>><
>>>:

ð32Þ
3.3. HLLC for multi-dimensional MHD

In keeping with the HLLC assumption that p�l ¼ p�r , which results in the condition (18), we adopt a con-
venient extension into multi-dimensional cases by requiring
B�
xl
¼ B�

xr
¼ BHLL

x ¼ SRBxr � SLBxl

SR � SL

: ð33Þ
Then the whole set of expressions for the intermediate states U�
l;r described in the last section remains the

same.
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ig. 2. Results for 2.5D shock-tube problem. The angle between the shock interface and y-axes is 0. Output is at t = 0.2.
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4. Numerical experiment

In this section, we provide some examples to test our new MHD-HLLC solver. The dimensional split

version of our solvers [14] is used. The CFL number is set as 0.8 and time step is determined adaptively.

To preserve the divergence-free constraint of magnetic fields, the flux-CT approach on staggered grid [1]
is used. Whenever the cell-centered magnetic field components are needed, interpolations from the face-cen-

tered values are used.

4.1. Rotated shock-tube problem

The first test problem was introduced in [19] as a 1D MHD Riemann problem. It was later used by [20]

to compare several numerical schemes for MHD. We adopt the same initial and boundary conditions as in

[20]. The initial left and right states are
Fig. 3.
ðq; vk; v?; vz; p;Bk;B?;BzÞ ¼
ð1:08; 1:2; 0:01; 0:5; 0:95; 2ffiffiffiffi

4p
p ; 3:6ffiffiffiffi

4p
p ; 2ffiffiffiffi

2p
p Þ; left;

ð1; 0; 0; 0; 1; 2ffiffiffiffi
4p

p ; 4ffiffiffiffi
4p

p ; 2ffiffiffiffi
2p

p Þ; right;

(

where i refers to the direction along the normal of the shock front, ^ refers to the direction perpendicular to

the normal of the shock front but still in the computational plane, and z refers to the direction out of the

plane. It involves three-dimensional field and velocity structure where the magnetic field plane rotates. Since

all of the three magnetic components are non-zero, it is often referred as a 2.5D problem.
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1.565
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x

B
⊥
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Results for 2.5D shock-tube problem. The angle between the shock interface and y-axes is tan�1 2. Output is at t ¼ 0:2=
ffiffiffi
5

p
.
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The Riemann solution for this example contains two fast shocks, two rotational discontinuities, two slow

shocks, and a contact discontinuity between the two slow shocks. As in [20], we solved it as an oblique

shock-tube problem in 2D. In [20], the angle between the shock interface and y-axes is set to 45�. To break

the symmetry, we solved it with an angle of a = tan�1 2 � 63.4�. Initial domain and problem set-up is the

same as in [20] except that the local grid spacing is different. We use 400 cells in x-direction. The number of
cells in y-direction is equal to the number of ghost cells. In [20], dy = dx was used, which leads to that the

shock interface is not in a straight line and the parallel component of the magnetic field is not conserved as

it should be even if the flux-CT is used. We modify the local spacing in y-direction so that the shock inter-

face has a straight line. For a = tan�1 2, we set dy = dx/2. After this modification, the parallel component of

the magnetic field is conserved exactly if the flux-CT is used.

Figs. 2 and 3 show the results for a = 0 and tan�1 2. For comparison, we also include the results of two-

state HLL solver of Linde [13] for a = 0. We can see that our MHD-HLLC greatly improves the results over

the HLL solver. For this calculation, the HLL and MHD-HLLC took almost the same CPU time (4.102 s
vs. 4.215 s), whereas the Roe�s solver took 6.175 s.

To quantify the numerical error, we calculate an L1 error as follows. First, we obtain a reference solution

of 400 cells by averaging the solutions of N = 1600 over each coarse cell. Then the difference Duij between
the numerical solution and reference solution is computed. Finally, the total error is calculated as
Fig. 4.
Err ¼
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where ui is only for the cell-centered variables. The errors of the four schemes (Roe�s, MHD-HLLC, Linde�s
two-state HLL, and HLL) for a = 0 are 0.0098, 0.0118, 0.0135, and 0.0148, respectively.

The next shock-tube problem is originally from Brio and Wu [4], which is a classical test problem for

ideal MHD codes. It is a 1D shock-tube problem with the initial states
Fig. 5.

Roe�s
ðq; vk; v?; p;B?;Bz; pÞ ¼
ð1; 0; 0; 0; 1; 0; 1Þ; left;

ð0:125; 0; 0; 0;�1; 0; 0:1Þ; right;

�

and Bi = 0.75. Again we solved it as a fully 2D problem with an angle a between the shock interface and y-

axes. The 2D test with a = 45� has been solved by Jiang and Wu [12], and many others. We solved it with

a = tan�1 2. The initial domain and grid set-up are the same as in the first example. The Riemann solution
for this example contains two fast shocks and two rarefaction waves, a slow compound, a contact discon-

tinuity, and a slow shock (see Fig. 4 for the numerical results). The errors of the three schemes (Roe�s,
MHD-HLLC, and HLL), calculated via Eq. (34), are 0.0250, 0.0218, and 0.0267, respectively. It is inter-

esting to see that the MHD-HLLC solver is even more accurate than Roe�s scheme for this problem.
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(a) Contours of velocity perpendicular to the grid v3 at t = 0.15. Bx = 1, By = 2. (a) MHD-HLLC Riemann solver is used; (b)

Riemann solver is used; (c) HLL Riemann solver is used.
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4.2. Two-dimensional propagation of Alfvén wave

This example is taken from [5]. It is pointed out in [5] that some schemes that perform quite well for

hydrodynamical tests may have difficulties with the propagation of Alfvén waves. The set-up of the problem

is as follows. A circular pulse of velocity perpendicular to the plane of computation is initialized at the cen-
ter of a 200 · 200 zone grid which contains a uniform magnetic field. Throughout the plane, the density,

pressure, and adiabatic index are set to 1, 3/5, and 5/3, respectively. The velocity is set to zero everywhere,

except for a circular region in the center of the grid with a radius of 10 zones in which v3 is set to 10�3. In [5],

the Alfvén pulse has been either transported in x-direction or in diagonal direction. We test the problem

with a different propagation direction by setting the magnetic field as Bx = 1, By = 2. This problem has exact

solutions for v3. The circular pulse in v3 should be carried along the magnetic field line at the Alfvén speed

intact and undistorted.

We solve this example with three different Riemann solvers. Fig. 5(a) to (c) show the results of MHD-
HLLC, Roe�s, and HLL Riemann solver. It is clear that HLL Riemann solver is more diffusive than MHD-

HLLC Riemann solver. For this example, HLL took 36 s, MHD-HLLC 38 s, and Roe�s solver took 50 s.
Fig. 6. Results for rotor problems with dimensional split solvers. Thirty contours between 0.483 and 12.95 are used.
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4.3. Rotor problem

This test problem is taken from [1]. It was also used by Tóth [20] to compare several numerical schemes.

We use exactly the same set-up of the problem as was described in [20].

We solve the first rotor problem of [20] to time 0.15. It was reported by Tóth [20] that many one step
TVD base scheme failed to solve this problem due to negative pressure. We did not encounter any difficul-

ties with all of our solvers and time integration schemes. We used two-level refinement with refinement ratio

of 3. Fig. 6 shows the results for Roe�s, MHD-HLLC and HLL Riemann solvers. HLL solver took 34 s,

MHD-HLLC solver took 37 s, and Roe�s solver took 52 s to reach the final time t = 0.15. It is clearly seen

that the HLL solver was too diffusive.
5. Conclusion

We have extended the HLLC Riemann solver for HD equations to MHD equations. The new MHD-

HLLC solver satisfies the integral form of conservation laws, does not require eigen-decomposition, and

can greatly improve the computational efficiency for MHD problems. This method is an improvement over

HLLE, and any one who uses a central scheme or ENO scheme based on either the Lax Friedrichs or

HLLE flux can use the HLLC flux to improve their results for MHD calculation. We acknowledge that

despite the computational efficiency advantage, the new MHD-HLLC solver must inevitably be more dif-

fusive on a seven-wave system than a linearized method which takes into account all intermediate states.
We recommend using the Roe�s solver if exact resolution of the additional waves are considered important.
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